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As CGM use in clinical practice continues to expand, effective use requires common 
metrics for assessment of CGM glycemia and clear clinical targets. In 2019, the ATTD 

Congress published recommendations from an international panel of expert clinicians 

and researchers to define core metrics and targets, including various times in ranges 
and an estimation of A1C,  the Glycemic Management Indicator or GMI.1 

Subsequently the Glycemic Risk Indicator (GRI) was developed as a composite 
metric from CGM data to assist with basic clinical interpretation of CGM data.2 In an 

earlier study, we have demonstrated how the GRI can help characterize the behavior 

and outcomes of a population of CGM users and may be a useful tool for digital 
health software to coach individuals on self-management behavior based on baseline 

and progressive values of GRI.3  
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RESULTS

BACKGROUND

A real-world data set of 499 CGM users with type 1 and type 2 diabetes (T1D and T2D) 

was created. Baseline was defined as the first 30 days of use from registration. The 

prediction period was between days 70 and 90 from baseline. Users with >70% sensor 

wear time in the prediction period were included in the prediction dataset (n=304). The 

GRI prediction variable was categorized as in target if the GRI score was <= 40 and 

above target if the GRI score was >40.  A Gradient Boosting Classifier was used to 

predict future GRI outcomes in three population subgroups: Overall (n=304), T1D only 

(n=125), and T2D only (n=140).

Figure 1: The Five GRI Zones (2) 

Table 1:  Model Output Results 
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SPECIFIC AIMS/PURPOSE

Earlier work has shown that combining a digital health solution and CGM devices 

supports improvements in glucose management.4 Dense data from CGM devices allows 

the calculation of a stable and composite metric like glucose risk indicator (GRI), which 

can be important in predicting future health outcomes. In this study we investigated if 

early digital engagement data could predict future GRI..

Figure 4: GRI Distribution Figure 2: Screenshots of the Digital Health Solution 

• These data demonstrate the potential for early engagement data from a digital 
health solution to predict future GRI outcomes. 

• Predicting GRI may help health plans and care teams to design highly-

personalized treatment plans to optimize glucose management at both individual 
and population levels. 

• This work is also foundational to leveraging real-time data like CGM to evolve 
digital health artificial intelligence capabilities. 

The Gradient Booster Classifier was highly accurate in predicting binary future, GRI outcomes in all 

subgroups. The overall model accuracy was 0,83, and 0,88 and 0,80 for the T1D and T2D subgroups 

respectively.  All three models had AUC score >0.9. 

Sub-group Data (n) Best Model Accuracy AUC Precise Recall F1

Baseline 304

Gradient 

Boosting 

Classifier

0.8353 0.9135 0.7355 0.7405 0.7287

T2D 140

Extreme 

Gradient 

Boosting

0.8033 0.8932 0.7988 0.785 0.7728

T1D 125

Light Gradient 

Boosting 

Machine

0.8864 0.9389 0.7917 0.7167 0.7157

No MEDAL 

Engagement
304

Extreme 

Gradient 

Boosting

0.8392 0.9210 0.7631 0.7381 0.7354

Figure 3:  Population Demographics 
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Gender Diabetes Type

T1D

55%

T2D 

45%

Female

51%

Male

49%
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