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BACKGROUND AND AIMS RESULTS
The application of Al in cardiometabolic health is rapidly expanding?, particularly in line with advancements in real-time sensor technology and As the prior 24-hour glucose out-of-range frequency increased, our model’s root mean square error (RMSE) also increased. The largest increase
data. Specific to diabetes management, the uptake of CGM continues to rise. Globally, CGM devices have been used by over 9 million in RMSE was noted when going from the medium out-of-range category to the high out-of-range category, with RMSE for 2-hour CGM generation
individuals with diabetes.? The need for solutions that make CGM data more interpretable and meaningful to users is increasingly paramount for increasing from 28 mg/dL to 33 mg/dL respectively. The 2-hour CGM generation RMSE also increased as the model perplexity increased from

behavior modification and outcomes optimization. Al modeling, when applied to dense CGM data, can be used to predict the near-future glucose

_ _ . _ o very low to very high.
trajectory, which can then be used by a digital health platform to translate these predicted trajectories into actionable steps for users to optimize

glycemia. Figure 2: Prediction Performance by Prior 24 Hours Glucose Level

Welldoc has been developing GPT models (see Figure 1) to predict CGM trajectory at different time horizons.3 In this study, we evaluated the ull = ,r:“ A e L e by | 7 e Emmmm:”., ~—
performance of our GPT model across two prediction contexts: (a) the prior 24 hours glucose out-of-range frequency and (b) model perplexity. o i o
Perplexity is a measure of prediction uncertainty, and in this context. denotes how “surprised” a model is by a given glucose value input, based on ol =1 ==

the data on which the model was trained

Figure 1: Design of the GPT Model
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to individuals in monitoring their glucose levels as well as their overall health. Additionally, such capabilities can also enable different models for
CGM usage, including intermittent sensor wear. This could lead to significant cost savings for individuals and their healthcare providers in
optimizing comprehensive diabetes management programs.

MATERIALS AND METHODS

A GPT model to generate CGM trajectories at 30-minute, 60-minute, and 2-hour time intervals was created using a real-world data set from 592 REFERENCES
CGM users. Glucose out-of-range frequency was then classified into 5 categories of out-of-range glucose values: very low (<50 mg/dL), low (50-

69 mg/dL), medium (180-249 mg/dL), high (250-300 mg/dL), and very high (>300 mg/dL). A perplexity score, along with the root-mean-square-
error (RMSE) of the predicted glucose value vs. the actual value, were calculated. 1. Sheng B, Guan Z,Lim LL, et al. Large language models for diabetes care: Potentials and prospects, Science Bulletin, 2024,ISSN 2095-9273,
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